Termine

Kolloquiumsvortrag (MaWi), Prof. Richard Fu, Faculty of Engineering and Environment, Northumbria University, Newcastle / am 28.05.2018

28.05.2018 von 17:15 bis 18:00

Institute Ostufer, Geb. D, "Aquarium", Kaiserstr. 2, 24143 Kiel

Titel: Acoustic wave lab-on-chip is now flexible, bendable and potentially wearable!

Abstract: Thin film acoustic wave devices especially surface acoustic waves (SAW) have been used for sample preparation (sorting, separating, mixing, nebulization and dispensing) as well as bio-sensing. This talk will focus on our recent work of flexible and wearable thin film acoustic wave lab-on-chip (mainly using ZnO and AlN films on flexible substrates) for acoustic wave based microfluidic applications. We report theoretical and experimental studies of the evolution, hybridization and decoupling of wave modes in the flexible acoustic wave devices, as well as their vibration patterns. thus providing a guide for different microfluidic applications. Thin film based flexible SAW devices have the potential to be integrated with other microfluidic and sensing technology on flexible substrates including CMOS integrated circuits to make novel lab-on-chip for bio-detection for wearable and flexible applications. SAW devices on commercial polymer and aluminum foils have been fabricated and various microfluidic functions, such as mixing, pumping, jetting have been demonstrated with bent and deformed acoustic wave devices.

About Prof. Richard Fu. He has extensive experience in smart thin film/materials, biomedical microdevices, lab-on-chip, micromechanics, MEMS, nanotechnology, sensors and microfluidics. He has established a good reputation from his pioneer research work on shape memory films, piezoelectric thin films, nanostructured composite/films for applications in MEMS, sensing and energy applications. He published over 330 science citation index (SCI) journal papers (including Progress in Materials Science and Nature Communications), 2 books, 20 book chapters, and over 120 conference papers. His current SCI H-index is 39 with over 6500 citations. He is associate editor/editorial board members for seven international journals including Scientific Report. He is regular journal paper reviewers for more than 30 journals, and has co-organized 12 international conferences worldwide, and co-edited six special issues for journals.

Prof. Quandt

Diesen Termin meinem iCal-Kalender hinzufügen

zurück

Kolloquiumsvortrag (MaWi), Prof. Richard Fu, Faculty of Engineering and Environment, Northumbria University, Newcastle / am 28.05.2018

28.05.2018 von 17:15 bis 18:00

Institute Ostufer, Geb. D, "Aquarium", Kaiserstr. 2, 24143 Kiel

Titel: Acoustic wave lab-on-chip is now flexible, bendable and potentially wearable!

Abstract: Thin film acoustic wave devices especially surface acoustic waves (SAW) have been used for sample preparation (sorting, separating, mixing, nebulization and dispensing) as well as bio-sensing. This talk will focus on our recent work of flexible and wearable thin film acoustic wave lab-on-chip (mainly using ZnO and AlN films on flexible substrates) for acoustic wave based microfluidic applications. We report theoretical and experimental studies of the evolution, hybridization and decoupling of wave modes in the flexible acoustic wave devices, as well as their vibration patterns. thus providing a guide for different microfluidic applications. Thin film based flexible SAW devices have the potential to be integrated with other microfluidic and sensing technology on flexible substrates including CMOS integrated circuits to make novel lab-on-chip for bio-detection for wearable and flexible applications. SAW devices on commercial polymer and aluminum foils have been fabricated and various microfluidic functions, such as mixing, pumping, jetting have been demonstrated with bent and deformed acoustic wave devices.

About Prof. Richard Fu. He has extensive experience in smart thin film/materials, biomedical microdevices, lab-on-chip, micromechanics, MEMS, nanotechnology, sensors and microfluidics. He has established a good reputation from his pioneer research work on shape memory films, piezoelectric thin films, nanostructured composite/films for applications in MEMS, sensing and energy applications. He published over 330 science citation index (SCI) journal papers (including Progress in Materials Science and Nature Communications), 2 books, 20 book chapters, and over 120 conference papers. His current SCI H-index is 39 with over 6500 citations. He is associate editor/editorial board members for seven international journals including Scientific Report. He is regular journal paper reviewers for more than 30 journals, and has co-organized 12 international conferences worldwide, and co-edited six special issues for journals.

Prof. Quandt

Diesen Termin meinem iCal-Kalender hinzufügen

zurück

Kolloquiumsvortrag (INF), Dr. Matthias Mnich, Uni Bonn / am 01.06.2018

01.06.2018 von 14:15 bis 15:45

Institut für Informatik, Ludewig-Meyn-Straße 2, 24118 Kiel, Raum: Übungsraum 2/K

Titel: Multivariate Algorithms for Machine Scheduling Problems

Abstract: Machine scheduling problems are a long-time key domain of algorithms and complexity research.  In those problems, we are generally given a finite set J of jobs with certain characteristics, and we must find a schedule for processing the jobs on one or more machines, which also may have their individual specifications. Typical characteristics of a job are its processing time, its release date, its due date, or its importance reflected by an integer weight. A significant amount of research has been devoted in the past 60 years towards designing polynomial-time algorithms which approximate the value of optimal schedules (for various objective functions). A novel approach to machine scheduling problems are multivariate algorithms, which aim to find a provably optimal schedule at the expense of an increased run time, which is permitted to depend moderately exponentially on the job characteristics or other structural parameters. We survey some recent algorithms in this paradigm, present some novel results, and discuss several challenging open problems in this exciting research area.

kj@informatik.uni-kiel.de

Prof. Jansen

Diesen Termin meinem iCal-Kalender hinzufügen

zurück

Kolloquiumsvortrag (INF), Dr. Matthias Mnich, Uni Bonn / am 01.06.2018

01.06.2018 von 14:15 bis 15:45

Institut für Informatik, Ludewig-Meyn-Straße 2, 24118 Kiel, Raum: Übungsraum 2/K

Titel: Multivariate Algorithms for Machine Scheduling Problems

Abstract: Machine scheduling problems are a long-time key domain of algorithms and complexity research.  In those problems, we are generally given a finite set J of jobs with certain characteristics, and we must find a schedule for processing the jobs on one or more machines, which also may have their individual specifications. Typical characteristics of a job are its processing time, its release date, its due date, or its importance reflected by an integer weight. A significant amount of research has been devoted in the past 60 years towards designing polynomial-time algorithms which approximate the value of optimal schedules (for various objective functions). A novel approach to machine scheduling problems are multivariate algorithms, which aim to find a provably optimal schedule at the expense of an increased run time, which is permitted to depend moderately exponentially on the job characteristics or other structural parameters. We survey some recent algorithms in this paradigm, present some novel results, and discuss several challenging open problems in this exciting research area.

Prof. Jansen

Diesen Termin meinem iCal-Kalender hinzufügen

zurück

Kolloquiumsvortrag (MAWI), Prof. Dr. Ulrich Schwarz,Heidelberg University, Institute for Theoretical Physics am 04.06.2018

04.06.2018 von 16:00 bis 16:45

Institute Ostufer, Geb. D, "Aquarium", Kaiserstr. 2, 24143 Kiel

Titel: Cells and tissue as active materials

Abstract:

Biological systems such as cells and tissue use non-equilibrium processes to actively generate mechanical stress, movement and growth. Some of these processes can actually be reconstituted in biomimetic experiments with active soft matter. In this talk, we first discuss why and how contractile forces are generated by biological systems and how they can be measured, for example on soft elastic substrates. We then discuss how these contractile systems can be mathematically described by classical continuum mechanics extended by active elements. We finally explain how the local contractility of cells and tissue can be controled with optogenetics, and how the resulting forces and flows can be used to estimate their material properties.

Prof. Selhuber

Diesen Termin meinem iCal-Kalender hinzufügen

zurück

Kolloquiumsvortrag (MAWI), Prof. Dr. Ulrich Schwarz,Heidelberg University, Institute for Theoretical Physics am 04.06.2018

Kolloquiumsvortrag (MAWI), Nian. X Sun W.M. Keck Laboratory for Integrated Ferroics, & ECE Department, Northeastern University, Boston, / am 18.06.2018

18.06.2018 von 17:15 bis 18:00

Institute Ostufer, Geb. D, "Aquarium", Kaiserstr. 2, 24143 Kiel

Titel: RF NEMS Magnetoelectric Sensors

Abstract: The coexistence of electric polarization and magnetization in multiferroic materials provides great opportunities for realizing magnetoelectric coupling, including electric field control of magnetism, or vice versa, through a strain mediated magnetoelectric coupling in layered magnetic/ferroelectric multiferroic heterostructures [1-9]. Strong magnetoelectric coupling has been the enabling factor for different multiferroic devices, which however has been elusive, particularly at RF/microwave frequencies. In this presentation, I will cover the most recent progress on new integrated magnetoelectric materials, magnetoelectric NEMS (nanoelectromechanical system) based sensors and antennas. Specifically, we will introduce magnetoelectric multiferroic materials, and their applications in different devices, including: (1) novel ultra-compact RF NEMS acoustic magnetoelectric antennas immune from ground plane effect with < l0/100 in size, self-biased operation and potentially 1~2% voltage tunable operation frequency; and (2) ultra-sensitive RF NEMS magnetoelectric magnetometers with ultra-low noise of ~1pT/Hz1/2 at 10 Hz for DC and AC magnetic fields sensing. These novel magnetoelectric devices show great promise for applications in compact, lightweight and power efficient sensors and sensing systems, ultra-compact antennas and for radars, communication systems, biomedical devices, IoT, etc.

Reference: 1. N.X. Sun and G. Srinivasan, SPIN, 02, 1240004 (2012); 2. J. Lou, et al., Advanced Materials, 21, 4711 (2009); 3. J. Lou, et al. Appl. Phys. Lett. 94, 112508 (2009); 4. M. Liu, et al. Advanced Functional Materials, 21, 2593 (2011); 5. T. Nan, et al. Scientific Reports, 3, 1985 (2013); 6. M. Liu, et al. Advanced Materials, 25, 1435 (2013); 7. M. Liu, et al. Advanced Functional Materials, 19, 1826 (2009); 8. Ziyao Zhou, et al. Nature Communications, 6, 6082 (2015). 9. T. Nan, et al. Nature Comm. 8, 296 (2017).

Short Bio: Nian Sun is professor at the Electrical and Computer Engineering Department, Director of the W.M. Keck Laboratory for Integrated Ferroics, Northeastern University, and Thrust Leader of 2-D Multiferroics in the NSF ERC Transitional Applications of Nanoscale Multiferroic Systems (TANMS). He received his Ph.D. degree from Stanford University. Prior to joining Northeastern University, he was a Scientist at IBM and Hitachi Global Storage Technologies. Dr. Sun was the recipient of the NSF CAREER Award, ONR Young Investigator Award, the Søren Buus Outstanding Research Award, etc. His research interests include novel magnetic, ferroelectric and multiferroic materials, devices and subsystems. He has over 240 publications and over 20 patents and patent applications. One of his papers was selected as the “ten most outstanding full papers in the past decade (2001~2010) in Advanced Functional Materials”. Dr. Sun has given over 100 plenary or invited presentations and seminars in national and international conferences and universities. He is an editor of Sensors, and IEEE Transactions on Magnetics, and a fellow of the Institute of Physics, and of the Institution of Engineering and Technology.

Prof. Quandt

Diesen Termin meinem iCal-Kalender hinzufügen

zurück

Sommerfest 2018

Kolloquiumsvortrag (ET/IT), Prof. Sawodny, Institut für Systemdynamik, Universität Stuttgart / am 16.07.2018

16.07.2018 von 17:15 bis 18:00

Institute Ostufer, Geb. D, "Aquarium", Kaiserstr. 2, 24143 Kiel

Titel: folgt

Abstract: folgt

Diesen Termin meinem iCal-Kalender hinzufügen

zurück